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We investigate how the entropy numbers (en(T )) of an arbitrary Ho� lder-con-
tinuous operator T : E � C(K ) are influenced by the entropy numbers (=n(K )) of
the underlying compact metric space K and the geometry of E. We derive diverse
universal inequalities relating finitely many =n(K )'s with finitely many en(T )'s which
yield statements about the asymptotically optimal behaviour of the sequence
(en(T )) in terms of the sequence (=n(K )). As an application we present new methods
for estimating the entropy numbers of a precompact and convex subset in a Banach
space E, provided that the entropy numbers of its extremal points are known.
� 2000 Academic Press

1. INTRODUCTION

Let (K, d ) be a metric space and B(x, =) :=[ y # K : d(x, y)�=] the
closed ball with radius = and centre x. Then for a bounded subset M/K
the n th entropy number of M is defined by

=n(M ) :=inf {=>0 : _x1 , ..., xq # K, q�n such that M/ .
q

k=1

B(xk , =)=
and the n th dyadic entropy number of M is en(M ) :==2n&1(M ). Further-
more, given a (bounded, linear) operator T : E � F between Banach spaces
E and F the n th dyadic entropy number of T is defined by

en(T ) :=en(T(BE)),

where BE is the closed unit ball of E. For a subset A of a Banach space E
we denote the absolutely convex hull of A by coA.

In this paper we prove several inequalities which describe how the
entropy numbers of an arbitrary 1-Ho� lder-continuous operator T: E �
C(K ) (a definition can be found in the next section) are influenced by the
entropy numbers of the underlying compact metric space K and the
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geometry of E. These inequalities complement earlier proven results of Carl
et al. [5].

As an application we prove the following inequalities which hold for
every Banach space E of type p, 1<p�2, ; :=1&1�p and all precompact
subsets A/BE .

(i) For 0<:<� and 0�#<� we have

sup
k�n

k:+;(log2(k+1))# ek(coA)�
c

=1(A)
sup

k�n 1+;�:
k:(log2(k+1))# =k(A).

(ii) For 0<:<; we have

sup
k�n

k:ek(coA)�
c

=1(A)
sup
k�n

k:ek(A).

(iii) Let ;<:<�, an :=n;�(:&_) log2(n+1) and f : [0, �) � (0, �)
be a function with a&_ f (x)�f (ax)�a_f (x) for some 0�_<:&; and all
a, x�1. Then we have

sup
k�n

k;(log2(k+1)):&; f (log2(k+1)) ek(coA)�
c

=1(A)
sup
k�an

k:f (k) ek(A).

These inequalities complement results of Carl et al. [6], where the
asymptotic behaviour of (en(coA)) was considered in the case of =n(A)�
n&:, 0<:<� and =n(A)�(log(n+1))&:, :{;.

Finally we show with the help of some particular sets that our inequalities
yield asymptotically optimal results for both 1-Ho� lder-continuous operators
and convex hulls.

2. PRELIMINARIES

For an operator T : E � l�(A) the modulus of continuity |(T, . ) is
defined by

|(T, $ ) := sup
x # BE

sup
d(s, t)�$

|Tx(s)&Tx(t)| ($>0),

where (A, d) is a precompact metric space and l�(A) denotes the Banach
space of all bounded number families (!t)t # A over A with norm

&(!t)&� :=sup
t # A

|!t |.
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An operator T : E � l�(A) is called :-Ho� lder-continuous, 0<:�1, if

|T |: :=sup
$>0

|(T, $ )
$: <�.

In this case we write &T& : :=max[&T&, |T |:]. We recall that by a well-
known inequality of Carl (cf. [2]) we have

sup
k�n

k:ek(T )�c: sup
k�n

k:ak(T ) (1)

for every operator T : E � F and all :>0, where c:�1 is a constant only
depending on :, and ak(T ) denotes the kth approximation number of T,
defined by

ak(T ) :=inf[&T&A& : A : E � F bounded, linear with rank A<k].

Furthermore, for an operator T : E � C(K ) we always have

ak+1(T )�|(T, =k(K ))

(cf. [8]). Hence, for 1-Ho� lder-continuous operators T : E � C(K ) inequality
(1) results in

sup
k�n

k:ek(T )�2:c: &T&1 max[1, sup
k�n&1

k:=k(K )]. (2)

In the case of general Banach spaces E, this estimate is asymptotically optimal.
However, if one also consider the geometry of the space E in terms of so-called
``local estimates'' of entropy numbers, better estimates for (en(T )) are known
in the case of polynomial degree of (=n(K )) due to Carl et al. (cf. [5]). In this
paper we prove inequalities similar to (2), which cover the results of [5], but
also give asymptotically optimal estimates for various other cases, in which the
order of decay of (=n(K )) is not faster than power type.

Several applications for their results are given by Carl and Edmunds in [4].
We restrict ourselves to consider the entropy numbers of the absolutely convex
hull coA of a given precompact subset A/E of a B-convex Banach space E
under the assumption of ``known'' entropy numbers of A as described in the
Introduction. For this aim let l1(A) denote the Banach space of all summable
families of real numbers (!t)t # A over an index set A with norm

&(!t)&1 := :
t # A

|!t |.
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Furthermore, for a precompact subset A/E of a Banach space E let TA

be the operator l1(A) � E defined by TA(et) :=t, where (et)t # A is the
canonical basis of l1(A). Since coA=T(Bl1(A)) we have

en(TA)=en(coA).

Moreover, T $A as an operator mapping E$ into l�(A) is 1-Ho� lder-
continuous with &T $A&1=max[&A&, 1], where &A& :=supx # A &x&. With
results of [1] this will allow us to estimate en(coA) by the first an entropy
numbers =1(A), ..., =an

(A) as described above.
A Banach space E is of type p, 1�p�2, if there exists a constant c>0,

such that for all n # N and all x1 , ..., xn # E we have

\|
1

0 " :
n

i=1

ri (t) xi"
2

E
dt+

1�2

�c \ :
n

i=1

&xi&
p
E+

1�p

,

where rn is the nth Rademacher function, that is, rn(t)=sign(sin(2n?t)).
The Lq -spaces of Lindenstrauss and Pe*czynski are of type p=min[2, q]
for 1�q<�, in particular the Lebesgue space Lq(+) is of type p=
min[2, q] for 1�q<�. A Banach space is called B-convex, if it is of some
type p>1.

The geometry of a Banach space E will be expressed in terms of so-called
``local estimates'' for the entropy numbers of operators T : E � ln

� , where
ln

� denotes the n-dimensional l�-space. Namely, we consider Banach
spaces E for which for some ;>0 there exists a constant c;(E )�1, such
that for all n # N and every T : E � ln

� we have

ek(T )�c;(E ) &T& \log2(n�k+1)
k +

;

, 1�k�n. (3)

It was shown in [6] that this estimate is true for ;=1& 1
p , if E$ is of type

p, 1<p�2, or if E$ is at least of weak type p for 1<p<2. The proof in
[6] is based on the earlier studied ``dual'' situation, which states
inequalities of the above type for operators T : ln

1 � E. This was first con-
sidered by Maurey (cf. [13]), whose results were improved by Carl in [3].
Finally, Junge and M. Defant showed [9] that for 1<p<2 the ``dual''
situation holds for ;=1&1�p if and only if E is of weak type p. As men-
tioned in [6], the parameter ; for inequalities of type (3) is bounded by
1
2 since Dvoretzky's Theorem. Moreover, in the case that E is a Hilbert
space and ;= 1

2 , Carl and Pajor proved an analogue estimate for the
Kolmogorov numbers

dn(T ) :=inf[&QF
Fo

T& : dim Fo<n],
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where QF
Fo

denotes the canonical surjection from the Banach space F onto
the quotient space F�Fo (cf. [7]). This will be used in Section 6 to estimate
Gelfand widths of convex sets in Hilbert spaces.

For 0<p<� and T: E � F being an arbitrary operator we define

*p, �(T ) :=sup
n�1

n1�pen(T ).

If T1 , ..., Tn are operators acting between E and F with *p, �(Ti)<�, we
have

*p, � \ :
n

i=1

Ti+�cp \ :
n

i=1

(*p, �(Ti))s+
1�s

,

where cp>0 is a constant only depending on p and s=
p

1+ p . In the sequel
we also need the following well-known fact:

Lemma 1. Assume that the condition (3) is true for the Banach space E
and the parameter ; # (0, 1�2]. Then we have

*1�;, �(T )�2c;(E ) &T& (log2(n+1));

for all T : E � ln
� and all n # N. Moreover, for every _>; there exists a

constant c;, _(E )�1, such that for all n # N and all operators T : E � ln
� the

estimate

*1�_, �(T )�c;, _(E ) &T& n_&;

holds.

Finally, we need the following theorem of [1], which is an answer to the
so-called duality problem of entropy numbers:

Proposition 1. Let E be a Banach space and F be a B-convex Banach
space. Then for every :>0 there exists a constant d:(F )�1, such that for
all compact operators T : E � F and all n�1 we have

1
d:(F )

sup
k�n

k:ek(T )�sup
k�n

k:ek(T $)�d:(F ) sup
k�n

k:ek(T ).

Let (an), (bn) be two positive sequences. We write an Pbn if there exists
a constant c>0 such that an�c bn for all n�1. Moreover we write an tbn

if an Pbn and bn Pan .
As a consequence of Proposition 1 we get by a trick of Carl in [3]:
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Proposition 2. Let E be a Banach space, F be a B-convex Banach space
and T : E � F be a compact operator. Moreover let (an) be a sequence such
that (n:an) is increasing for some :>0. Then we have

en(T )Pan iff en(T $)Pan

and

en(T )tan iff en(T $)tan .

Proof. The first assertion is a direct consequence of Proposition 1.
Now we assume en(T )tan . Then we already know en(T $)�\1 an . Since
(n:an) is increasing we get an�c: ac } n for all c, n # N. Moreover, for _>:
and suitable constants \2 , \3�1 we obtain

(c } n)_ ac } n�\2(c } n)_ ec } n(T )

�\3 sup
k�c } n

k_ek(T $)

�\3(sup
k�n

k_ek(T $)+ sup
n�k�c } n

k_ek(T $))

�\1 \3n_an+\3 en(T $)(c } n)_

by Proposition 1. Hence, if we choose c # N with c_&:>\1 \3 , we get
en(T $)tan . The converse implication can be proven analogously. K

3. THE MAIN RESULTS

In this section we state our results concerning the entropy behaviour of
a given 1-Ho� lder-continuous operator T : E � C(K ). Moreover, we give
some examples, which show that the results let us obtain asymptotically
optimal estimates of (en(T )).

We restrict ourselves to 1-Ho� lder-continuous operators, since it is easy
to derive similar results for :-Ho� lder-continuous operators by equipping
(K, d ) with the new metric d : (cf. [4]).

Moreover, all results of this section can be applied to 1-Ho� lder-continuous
operators T : E � l�(A), where A is a precompact metric space, since such
operators factor canonically through C(A� ), where A� denotes the comple-
tion of A.

For brevity's sake we write cK :=max[1, =1(K )&1], whenever K is a
compact metric space. The major aim of this paper are the following
theorems:
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Theorem 1. Let E be a Banach space such that the condition (3) holds
for the parameter ; # (0, 1�2]. Then for all 0<:<; there exists a constant
c:, ;(E )�1, such that for all compact metric spaces (K, d ), all 1-Ho� lder-
continuous operators T : E � C(K ) and all n # N we have

sup
k�n

k:ek(T )�c:, ;(E ) cK &T&1 sup
k�n

k:ek(K ).

Theorem 2. Let E be a Banach space such that the condition (3) holds
for the parameter ; # (0, 1�2]. Furthermore let 0�_<:&; and f: [0, �)
� (0, �) be a function such that

a&_f (s)�f (a } s)�a_ f (s) (4)

holds for all a, s�1. Then there exists a constant c�1, such that for all
compact metric spaces (K, d), all 1-Ho� lder-continuous operators T : E �
C(K ) and all n # N the inequality

sup
k�n

k;(log2(k+1)):&; f (log2(k+1)) ek(T )�c } cK &T&1 sup
k�an

k:f (k) ek(K )

holds with an :=n;�(:&_) log2(n+1).

Theorem 3. Let E be a Banach space such that the condition (3) holds
for the parameter ; # (0, 1�2]. Then for all :>0 and #�0 there exists a
constant c:, ;, #(E )�1, such that for all compact metric spaces (K, d ), all
1-Ho� lder-continuous operators T : E � C(K ) and all n # N we have

sup
k�n

k:+;(log2(k+1))# ek(T )

�c:, ;, #(E ) cK &T&1 sup
k�n1+;�:

k:(log2(k+1))# =k(K ).

In particular the estimates of the above theorems hold, if E$ is of type
p>1 and ; :=1& 1

p .

Corollary 1. Let E be a Banach space, such that E$ is of type p>1
and ; :=1& 1

p . If (K, d ) is a compact metric space such that

en(K )Pn&: (log(n+1))&#

holds for the dyadic entropy numbers and some :{;, # # R, then for all
1-Ho� lder-continuous operators T : E � C(K ) we have

en(T )P{n&:(log(n+1))&#

n&;(log(n+1))&:+; (log(log(n+1)+1))&#

if 0<:<;
if ;<:<�.
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Proof. The case 0<:<; immediately follows from Theorem 1. If
;<:<� let c :=exp( 2

:&;) and f (x) :=(log(c } (x+1)))#. Then we have

a&_f (x)�f (ax)�a_f (x)

for a, x�1 and _ := :&;
2 . Since f (x)t(log(x+1))# for x � � the assertion

follows by Theorem 2. K

As a consequence of Theorem 3 we obtain the following corollary, which
was proven for #=0 in [5] and for #�0 in [11]:

Corollary 2. Let E be a Banach space, such that E$ is of type p>1
and ; :=1& 1

p . If (K, d ) is a compact metric space such that

=n(K )Pn&:(log(n+1))&#

holds for some :>0 and # # R, then for all 1-Ho� lder-continuous operators
T : E � C(K ) we have

en(T )Pn&:&;(log(n+1))&#.

Proof. The case #�0 follows immediately from Theorem 3. On the
other hand for #<0 we have

n:+;(log2(n+1))&# en(T )P sup
k�n1+;�:

k:(log2(k+1))&# =k(K )

P sup
k�n1+;�:

(log2(k+1))&# (log2(k+1))&#

P (log2(n+1))&2#. K

Remarks. We will see in the last section, that the estimates of the
corollaries are asymptotically optimal for E=lp , 2�p<�.

Moreover, the theorems of this section are also valid for the
Kolmogorov numbers dn(T : E � C(K )) if E is a Hilbert space, since the
essential condition (3) is true for them in this case.

The logarithmic term (log(n+1))&# in the corollaries can be replaced by
various other functions, e.g., (log(n+1))&# (log(log(n+1)+1))&' for
#, ' # R.

Finally we remark, that with the techniques and notations of Theorem
1 we obtain

sup
k�n

k;(log(k+1))&(1+;) ek(T )�c;(E ) cK &T&1 sup
k�n

k;ek(K ) (5)

for the limiting case :=;.
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4. DECOMPOSITION OF OPERATORS

To prove the Theorems 1, 2, and 3, we need some technical facts about
the decomposition of 1-Ho� lder-continuous operators T : E � C(K ) into
finite sums of type

T= :
n

i=1

Ti+S,

where the operators Ti have finite rank and some additional properties.
Therefore we define

supp . :=[t # K : .(t){0]

for . # C(K ). Moreover, we write E =
1

F or E/�
1

F, if the Banach space E
is isometrically isomorphic to F, resp. isometrically embedded into F.

We start with a simple lemma, whose proof we omit:

Lemma 2. Let (K, d ) be a compact metric space and T : E � C(K ) be a
1-Ho� lder-continuous operator. Furthermore, let .1 , ..., .n # C(K ) be a parti-
tion of unity and t1 , ..., tn # K such that .i (tj)=$ij . Then for the operator

A: E � C(K )

x [ :
n

i=1

Tx(ti) .i

the following statements hold:

&A&�&T&

&T&A&�2 sup
i�n

=1(supp .i) &T&1

range A/span[.1 , ..., .n] =
1

ln
� .

The following lemma constructs a special partition of unity from a given one.

Lemma 3. Let (K, d) be a compact metric space, (.i)/C(K ) be a
partition of unity and ti # K, such that .i (t j)=$ij . Furthermore let M # N
and $>0 such that =M(K )<$. Then there exist a partition of unity (�i) of
at most M functions and si # K such that

�i (s j)=$ij

=1(supp �i)�$+sup
j

=1(supp .j)

span(�i)/span(.i).
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Proof. Let = :=supj =1(supp .j). Since K is compact, there are elements
yi # K such that supp .i /B( yi , =). Furthermore, =M(K )<$ implies the
existence of a $-net [z1 , ..., zm]/K with m�M. Now let A1 , ..., Am be a
partition of K with Ai /B(zi , $ ). Then for 1�i�m we define

�i := :
yj # Ai

.j

if there exists an index j with yj # Ai . Otherwise we omit the index i. There-
fore, (�i) is a partition of unity of at most M functions and span(�i)/
span(.i). Moreover, for t # supp �i there exists yj # Ai such that t # supp .j

/B( yj , =). Hence d(t, yj)�=. On the other hand, yj # Ai /B(zi , $) implies
d( yj , zi)�$. Therefore, we get d(t, zi)�$+= and hence

=1(supp �i)�$+=.

Finally, let 1�i�m such that there exists an index j with yj # Ai . Define
si :=tj . Then for k�m we obtain

�k(si)= :
yl # Ak

.l (s i)= :
yl # Ak

.l (tj)= :
yl # Ak

$l, j=$i, k

since yj # Ak if and only if i=k. K

Iterating the procedure of Lemma 3 we receive:

Lemma 4. Let (K, d) be a compact metric space and n�1 be an integer.
Moreover, let :o , :1 , ..., :n # N and ;&1 , ;o , ;1 , ..., ;n>0 be finite sequences,
such that

=:i
(K )<;i

2;i �;i&1

for all 0�i�n. Then there exist partitions of unity Po , ..., Pn /C(K ), Pk=
(.k, i) i and elements tk, i # K such that for all 0�k�n the following
statements are true:

card Pk�:k

=1(supp .k, i)�;k&1

.k, i (tk, j)=$ij

span Pk/span Pk+1.
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Proof. Let k=n. Since =:n
(K )<;n there exists a minimal ;n -net 1

consisting of an�:n elements x1 , ..., xan
. Let Pn=(.n, i) i�an

be a partition
of unity subordinate to this open covering. Then

=1(supp .n, i)�=1(B(xi , ;n))=;n�;n&1

and since 1 is minimal, we can find elements tn, j # B(xj , ;n) such that
tn, j � B(x i , ;n) for i{ j. Hence .n, i (tn, j)=$ij .

Now we assume, that we have already constructed Pk+1 according to the
assertion. Then by Lemma 3 we get a partition of unity Pk :=(�i) of at
most :k functions and elements (si) i such that

=1(supp �i)�;k+sup
j

=1(supp .k+1, j)�2;k�;k&1

�i (sj)=$ij

span Pk/span Pk+1 .

Therefore, we define .k, i :=�i and tk, i :=si . K

Now we combine the previous lemma with Lemma 2 and obtain a
decomposition of 1-Ho� lder-continuous operators T : E � C(K ) generalizing
a corresponding decomposition in [5]:

Lemma 5. Let (K, d ) be a compact metric space and n�1 be an integer.
Moreover, let :o , :1 , ..., :n # N, ;&1 , ;o , ;1 , ..., ;n>0 be finite sequences,
such that

=:i
(K )<;i

2;i �;i&1

for all 0�i�n. Furthermore, let T : E � C(K ) be a 1-Ho� lder-continuous
operator. Then there exists a decomposition

T= :
n

i=0

Ti+S

by operators Ti : E � C(K ) and S : E � C(K ), such that

&Ti &�4;i&2 &T&1 for i=1, ..., n

&To&�&T&

&S&�2;n&1 &T&1

range Ti
/�

1
l:i

� for i=0, ..., n.
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Moreover, To is of the form x [ � i Tx(si) �i ( . ), where (�i) i /C(K )
is a partition of unity of at most :o functions with �i (s j)=$i, j and
=1(supp �i)�;&1 .

Proof. By Lemma 4 we get partitions of unity P0 , ..., Pn . Therefore, by
Lemma 2 we can construct operators Ak : E � C(K ) with

&Ak&�&T&

&T&Ak&�2;k&1 &T&1

range Ak/span Pk
/�

1
l:k

�.

Now we define To :=Ao , Ti :=Ai&Ai&1 for i=1, ..., n and S :=T&An .
Clearly, we have T=�n

i=0 Ti+S and &S&�2;n&1 &T&. Furthermore,

&Ti &�&T&Ai&+&T&Ai&1&�2 &T&1 (;i&1+;i&2)�4;i&2 &T&1

holds. Since range Ak&1 /span Pk , we finally obtain range Tk /span Pk . K

5. THE PROOFS OF THE MAIN THEOREMS

Proof of Theorem 1. We first assume that =1(K )�1. Then for n=1 the
assertion is trivial. Therefore let us additionally assume n�2. For fixed
0<:<; we define

C :=sup
k�n

k:ek(K )

and r :=w: log2(n&1)x. To apply Lemma 5, we use the finite sequences

:i :=wexp2 2i�:x for 0�i�r

;i :=C } 2&i+: for &2�i�r.

Since wlog2 :i x+1�n one easily verifies =:i
(K )<;i for 1�i�r. Addi-

tionally =:o
(K )=e2(K )�C } 2&:<;o and 2; i�;i&1 hold. Hence we can

find a decomposition

T= :
r

i=0

Ti+S
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according to Lemma 5. Thus, for s := 1
1+; and a suitable c1�;�1 we obtain

n; en(T )�n;en \ :
r

i=0

Ti++n; &S&

�sup
j�1

j;ej \ :
r

i=0

Ti++2n;;r&1 &T&1

�c1�; \ :
r

i=0

(*1�;, �(Ti))
s+

1�s

+C22+:+;(n&1); 2&r &T&1 .

Since 4;&2=4C22+:�1 we observe &To&�&T&�&T&1�4;&2 &T&1 .
Hence for 0�i�r we may estimate

*1�;, �(Ti)�2c; (E ) &T i& (log2(: i+1));

�24c; (E ) ; i&2 &T&1 (log2 : i)
;

=26+:c;(E ) C &T&1 2i(;�:&1)

by Lemma 1. Thus with c (1)
:, ; (E ) :=26+:c1�; c;(E ) and c:, ; :=2;�:&1�

(2s(;�:&1)&1)1�s we receive

c1�; \ :
r

i=0

(sup
j�1

j;ej (Ti))s+
1�s

�c (1)
:, ; (E ) C &T&1 \ :

r

i=0

(2i(;�:&1))s+
1�s

�c (1)
:, ; (E ) c:, ;C &T&1 2r(;�:&1).

Hence for c (2)
:, ; (E ) :=c (1)

:, ; (E ) c:, ;+23+:+; we obtain

n;en(T )�c (1)
:, ; (E ) c:, ;C &T&1 2r(;�:&1)+C22+:+;(n&1); 2&r &T&1

�&T&1 C(c (1)
:, ; (E ) c:, ; 2: log 2(n&1)(;�:&1)

+22+:+;(n&1); 2&: log 2(n&1)+1)

=c (2)
:, ; (E ) &T&1 C(n&1);&:,

i.e., the assertion is proven in the case =1(K )�1 with the constant
c:, ;(E ) :=c (2)

:, ; (E ). Now let us assume that =1(K )<1. Then d� (s, t) :=
=1(K )&1 d(s, t) defines a new, equivalent metric on K with = (d� )

n (K )=
=1(K )&1 = (d )

n (K ) and

|T | (d� )
1 ==1(K ) |T | (d )

1 �|T | (d )
1 .
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Hence we obtain = (d� )
1 (K )=1 and &T& (d� )

1 �&T& (d )
1 . Finally we receive

n:en(T )�c:, ;(E ) &T& (d� )
1 sup

k�n
k:e (d� )

k (K )

�c:, ;(E ) = (d )
1 (K )&1 &T& (d )

1 sup
k�n

k:e (d )
k (K ). K

For the proof of Theorem 2 we need an additional lemma:

Lemma 6. Let E be a Banach space, such that the condition (3) holds for
the parameter ; # (0, 1�2], and let f : [0, �) � (0, �) be a function, such
that (4) holds for some 0�_<:&;. Furthermore, let K be a compact
metric space with =1(K )�1, T : E � C(K ) be a 1-Ho� lder-continuous operator
and .1 , ..., .m # C(K ) be a partition of unity with .i (t j)=$i, j for suitable
elements t j # K. Then for every integer n�2 and every operator

A : E � C(K )

x [ :
m

i=1

Tx(ti) .i

with m�n we have

en(A)�c &T&1 n&;

_\sup
i�m

=1(supp .i)+
supi�n (log2 (i+1)): f (log2 i) =i (K )

(log2 n): f (log2 n) + ,

where c=: c:, ;, f (E ) is a constant only depending on :, ;, f and E.

Proof of Lemma 6. Let c1 # N with c1>6 and 24+:+_ c;
1 2&c1 �6�1�2.

We define

Cn :=sup
i�n

(log2(i+1)): f (log2 i) =i (K ) for n�2

c2 :=c2
1

c3 :=c;
2 max[1, f (1) } ( f (0))&1 } (log2 c2):+_]

c:, ;, f (E ) :=max[c3 , 3;24+:+;+_c; (E )].

We proceed by induction on n. For 2�n�c2 and A according to the
assertion we have
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1�(log2 c2): max
2�i�c2

f (log2 i)(log2 n)&: ( f (log2 n))&1

�(log2 c2): max
2�i�c2

(log2 i)_ f (1)(log2 n)&: ( f (log2 n))&1

�sup
i�m

=1(supp .i)+(log2 c2):+_ f (1)(log2 n)&: ( f (log2 n))&1 ( f (0))&1 Cn

�
c3

c;
2

(sup
i�m

=1(supp .i)+(log2 n)&: ( f (log2 n))&1 Cn),

since Cn� f (0). Therefore we receive

en(A)�c:, ;, f (E ) &T&1 n&; \sup
i�m

=1(supp .i)+
Cn

(log2 n): f (log2 n)+ .

Now let n>c2 and A be according to the assertion. We define M :=
wn�c1 x+1 and = :=supi�m =1(supp .i). Since c1<- n, we have 1

2 log2 n�
log2 M<log2 n. Hence we obtain

(log2 M)&: ( f (log2 M ))&1�2:(log2 n)&: \ log2 n
log2 M+

_

( f (log2 n))&1

�2:+_(log2 n)&: ( f (log2 n))&1. (6)

We set $ :=Cn(log2 M )&: ( f (log2 M ))&1. Since M<n we get

=M(K )�Cn(log2(M+1))&: ( f (log2 M))&1<$.

Thus by Lemma 3 there exists a partition of unity (�i)/C(K ) of k�M
functions and elements si # K such that

�i (sj)=$ij

=1(supp �i)�$+=

span(�i)/span(.i).

Now we define the operators

B: E � C(K )

x [ :
k

i=1

Tx(si) �i
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and S :=A&B. Then for r :=wn�2x we get

en(A)�er(B)+er(S).

First we estimate er(B). Since M<n we may conclude

eM(B)�c:, ;, f (E ) &T&1 M&; \($ + =)+
CM

(log2 M ): f (log2 M )+
�c:, ;, f (E ) &T&1 \ n

c1+
&;

\=+
21+:+_Cn

(log2 n): f (log2 n)+
�c:, ;, f (E ) 21+:+_c;

1 &T&1 n&; \=+
Cn

(log2 n): f (log2 n)+
by the induction hypothesis and inequality (6). Furthermore, 6<c1<n
implies

r
M

=
wn�2x

wn�c1 x+1
�

n�2&1
n�c1+1

=c1 }
1�2&1�n
1+c1 �n

�c1 }
1�2&1�6

2
=

c1

6
.

Thus with [8, Lemma 5.10.3] we obtain

er(B)�8 } 2&r�MeM(B)

�8 } 2&c1 �6c:, ;, f (E ) 21+:+_c;
1 &T&1 n&; \=+

Cn

(log2 n): f (log2 n)+
�

1
2

c:, ;, f (E ) &T&1 n&; \=+
Cn

(log2 n): f (log2 n)+ .

To estimate er(S) we first observe that

&S&�&T&A&+&T&B&

�2= &T&1+2(=+$) &T&1

�4 &T&1 \=+
Cn

(log2 M): f (log2 M)+
�22+:+_ &T&1 \=+

Cn

(log2 n): f (log2 n)+
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by Lemma 2. Since range S is isometrically embedded in lm
�

/�
1

ln
� , we

finally obtain

er(S)�2c; (E ) \log(n�r+1)
r +

;

&S&

�23+:+_c;(E ) \log2 4
n�3 +

;

&T&1 \=+
Cn

(log2 n): f (log2 n)+
�

1
2

c:, ;, f (E ) &T&1 n&; \=+
Cn

(log2 n): f (log2 n)+
by condition (3). K

Proof of Theorem 2. As in the proof of Theorem 1 it suffices to con-
sider the case =1(K )�1. For fixed :, ; and f we set # := ;

:&_ and choose an
integer q with q>21�(:&_). Additionally, for a fixed n # N with n�a :=
max[2q, q3�#] we define

C := sup
k�n# log2(n+1)

k:f (k) ek(K )

r :=w# logq nx&1

:i :=nqi
for i=0, ..., r

;i :=2_C(log2 : i)
&: ( f (log2 :i))&1 for i=&1, ..., r.

An easy computation shows wlog2 :i x+1�n# log2(n+1) and hence we get

=:i
(K )�C(wlog2 :i x+1)&: ( f (wlog2 :i x+1))&1

<C(log2 :i)
&: \wlog2 :i x+1

log2 :i +
_

( f (log2 :i))&1

�2_C(log2 :i)
&: ( f (log2 : i))&1=;i

for 0�i�r. Furthermore, by the definition of q we obtain

2;i

;i&1

=2q&: f (qi&1 log2 n)
f (q i log2 n)

�2q&(:&_)�1.

Therefore, by Lemma 5 we can decompose T in

T=To+ :
r

i=1

Ti+S
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and receive

e2n(T )�en(To)+en \ :
r

i=1

Ti++e1(S ). (7)

First we estimate the term en(To). By Lemma 5 the operator To is con-
structed by a partition of unity (�i)/C(K ) of at most :o=n functions with

=1(supp � i)�;&1=2_Cq:(log2 n)&: ( f (q&1 log2 n))&1

�c:, ;, f C(log2 n)&: ( f (log2 n))&1,

where c:, ;, f :=2_q:+_. Hence by Lemma 6 there exists a constant
c(1)

:, ;, f (E ) such that

en(To)�c (1)
:, ;, f (E ) &T&1 Cn&;(log2 n)&: ( f (log2 n))&1

�c (1)
:, ;, f (E ) &T&1 Cn&;(log2 n)&:+; ( f (log2 n))&1.

Now we discuss e1(S). By Lemma 5 we know that

e1(S)�2;r&1 &T&1

=21+_C &T&1 q&:(r&1)(log2 n)&: ( f (qr&1 log2 n))&1

�21+_C &T&1 q&:(r&1)(log2 n)&: q_(r&1)( f (log2 n))&1

�c (2)
:, ;, f (E ) C &T&1 n&;(log2 n)&:+; ( f (log2 n))&1 ,

where c (2)
:, ;, f (E ) :=21+_ q3(:&_). Finally we estimate en(� r

i=1 T i). For
s := 1

1+; and suitable c1�;�1 we obtain

n; en \ :
r

i=1

Ti+�c1�; \ :
r

i=1

(*1�;, �(Ti))
s+

1�s

�8c1�; c;(E ) &T&1 \ :
r

i=1

((log2 :i)
; ;i&2)s+

1�s

=23+_c1�;c;(E ) q2: &T&1 C

_\ :
r

i=1

(q&i(:&;)(log2 n);&: ( f (qi&2 log2 n))&1)s+
1�s

�23+_c1�;c;(E ) q2:+_ &T&1 C(log2 n);&:

_\ :
r

i=1

q&i(:&;) s( f (qi&1 log2 n))&s+
1�s
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�23+_c1�;c;(E ) q2: &T&1 C(log2 n);&:

_\ :
r

i=1

(q&i(:&;&_) s( f (log2 n))&s+
1�s

�c (3)
:, ;, f (E ) &T&1 C(log2 n);&: ( f (log2 n))&1 ,

where c (3)
:, ;, f (E ) :=23+_c1�;c;(E ) q2:(��

i=1q&i(:&;&_) s)1�s. Hence we have
proven

n;(log2 n):&; f (log2 n) e2n(T )�c(4)
:, ;, f (E ) &T&1 sup

k�n# log2(n+1)

k:f (k) ek(K )

for n�a and suitable c (4)
:, ;, f (E )�1. Now the assertion follows easily. K

Before we prove Theorem 3 we remark that

:
n

i=1

i &bea } i�
ea

a&b
(n+1)&b ea } n (8)

holds for all 0<b<a and n # N.

Proof of Theorem 3. Again it suffices to consider the case =1(K )�1.
For fixed :>0 and #�0 we choose an integer a with a�2+
max[24�;, 22�:]. Then for a fixed integer n�a we define:

C := sup
j�n1+;�:

j :(log2( j+1))# =j (K )

r :=w(:+;) log2(n&1)x&3

L :=w: log2(n&1)x

:i :=w2(i+3)�:+1x for i=0, ..., r

;i :=max[1, :#] C2&(i+3)(i+3)&# for i=&2, ..., r.

Clearly, a�n implies 1�L�r. Furthermore, since :i�n1+;�: we obtain
=:i

(K )<; i for 0�i�r. Hence we can decompose T by Lemma 5 in

T= :
L&1

i=0

Ti+ :
r

i=L

Ti+S

and receive

en(T )�ewn�2x \ :
L&1

i=0

Ti++ewn�2x \ :
r

i=L

Ti++&S&. (9)
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Before estimating the terms of the right side of (9), we observe that
4;&2=4 max[1, :#] C2&1�2 and thus &To&�&T&1�4;&2 &T&1 . Hence
for _>; and 0�i�r we obtain

&Ti & :_&;
i �4;i&2 &T&1 w2(i+3)�:+1x_&;

�c:, ;, #, _ &T&1 C(i+1)&# 2(i+1)((_&;)�:&1), (10)

where c:, ;, #, _ :=22+_&;+2((_&;)�:) max[1, :#].
To estimate the first term of inequality (9) we choose _>:(

#
ln 2+1)+;

and set s := 1
1+_ . Then by Lemma 1 and inequality (10) we obtain

\n
2�

_

ewn�2x \ :
L&1

i=0

Ti+
�c1�_ \ :

L&1

i=0

(*1�_, �(Ti))s+
1�s

�c1�_ c;, _(E ) \ :
L&1

i=0

(&Ti& :_&;
i )s+

1�s

�c1�_ c:, ;, #, _(E ) C &T&1 \ :
L

i=1

i &#s2 i((_&;)�:&1) s+
1�s

(11)

for suitable c1�_�1 and c:, ;, #, _(E ) :=c1�_c;, _(E ) c:, ;, #, _ . By inequality (8)
there exists a constant c (1)

:, ;, #>0 such that we may conclude

ewn�2x \ :
L&1

i=0

Ti+�3_c:, ;, #, _(E ) C &T&1 n&_ \ :
L

i=1

i &#s 2i(_&;)�:&1) s+
1�s

�3_c:, ;, #, _(E ) c(1)
:, ;, #C &T&1

_n&_(L+1)&# 2L((_&;)�:&1)

�c (1)
:, ;, #(E ) C &T&1 n&_

_(: log2(n&1))&# 2: log2(n&1)((_&;)�:&1)

�:&#4#c (1)
:, ;, #(E ) C &T&1 (log2(n+1))&# n&:&;,

where c (1)
:, ;, #(E ) :=3_c:, ;, #, _(E ) c (1)

:, ;, # .
Next we estimate the second term of inequality (9). Analogously to (11)

we get

\n
2�

_

ewn�2x \ :
r

i=L

T i+�c:, ;, #, _(E ) C &T&1

_\ :
r

i=L

(i+1)&#s 2(i+1)((_&;)�:&1) s+
1�s
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for _ :=;+ :
2 and s := 1

1+_ . Thus we obtain

ewn�2x \ :
r

i=L

Ti+�3_c:, ;, #, _(E ) C &T&1 n&_

_\ :
r

i=L

(i+1)&#s 2(i+1)((_&;)�:&1) s+
1�s

�c (2)
:, ;, #(E ) C &T&1 n&_(L+1)&# 2L((_&;)�:&1)

�21+:+2#:&#c (2)
:, ;, #(E ) C &T&1 (log2(n+1))&# n&:&;

with c(2)
:, ;, #(E ) :=3_c:, ;, #, _(E )(1�(1&- 2 s)). Finally we consider the last

term. By Lemma 5 we obtain

&S&�2;r&1 &T&1

�23+# max[1, :#] C &T&1 (r+4)&# 2&(r+4)

�c (2)
:, ;, # C &T&1 (log2(n+1))&# n&:&;,

where c (2)
:, ;, # :=23+:+;+3#(:+;)&# max[1, :#]. Combining the estimates

we easily get the assertion. K

6. ENTROPY AND GELFAND WIDTHS OF CONVEX HULLS

In this section we give estimates for the n th entropy number en(coA) of
a given precompact subset A/E of a B-convex Banach space E with the
help of Theorems 1, 2, and 3. The corollaries of this section complement
earlier proven results of Carl et al. [6].

Moreover, since Theorems 1, 2, and 3 also hold for the Kolmogorov
numbers, if E is a Hilbert space, we also obtain estimates for the Gelfand
widths cn(coA) :=cn(TA), where cn(.) denotes the n th Gelfand number
defined by

cn(T : E � F ) :=inf[&T |Eo
& : codim Eo<n]

and TA : l1(A) � E is the operator defined by TA(et) :=t as pointed out in
the introduction. For a geometric interpretation of cn(coA) see, e.g., [12].
We start with a result which is analogous to Theorem 1.

Theorem 4. Let E be a Banach space, such that the dual space E$ fulfills
the condition (3) for the parameter ; # (0, 1�2]. Then for all 0<:<; there
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exists a constant c:, ;(E )�1, such that for all precompact A/E and all
n # N the inequality

sup
k�n

k:ek(coA)�c:, ;(E )
&A&

=1(A)
sup
k�n

k:ek(A)

holds. If E is a Hilbert space and ;= 1
2 , this is also true for the Gelfand

widths cn(coA).

Proof. We consider the metric d(x, y) :=(1�=1(A)) &x& y& on A. One
easily checks that en((A, d ))=(1�=1(A)) en(A) and |T $A : E$ � l�((A, d ))| 1

==1(A). Hence we get =1((A, d ))=1 and &T $A : E$ � l�((A, d ))&1=&A&.
Therefore we obtain

n:en(coA)�sup
k�n

k:ek(TA : l1(A) � E )

�d:(E ) sup
k�n

k:ek(T $A : E$ � l�(A))

=d:(E ) sup
k�n

k:ek(T $A : E$ � l�((A, d )))

�d:(E ) c (1)
:, ;(E )

&A&

=1(A)
sup
k�n

k:ek(A)

by Proposition 1 and Theorem 1. If E is a Hilbert space, the assertion
for the Gelfand widths follows by cn(TA)=dn(T $A) and the remarks of
Section 3. K

Now we observe that in the situation of Theorem 4 we have

sup
k�n

k:ek(A)�sup
k�n

k:ek(coA)Psup
k�n

k:ek(A)

and that in the Hilbert space case we have

sup
k�n

k:ek(A)�sup
k�n

k:ek(coA)Psup
k�n

k:ck(coA)Psup
k�n

k:ek(A)

by Carl's inequality. Hence, with the techniques used in the proof of
Proposition 2 we obtain:

Corollary 3. Let E be a Banach space of type p>1 and 0<:<1& 1
p .

If (an) is a positive sequence, such that (n:an) is monotone increasing, then
for every precompact subset A/E we have

en(A)Pan iff en(coA)Pan
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and

en(A)tan iff en(coA)tan .

If E is a Hilbert space, these statements are also equivalent to cn(coA)Pan ,
respectively cn(coA)tan .

Remark. Corollary 3 states that in B-convex Banach spaces E the sub-
sets A and coA paradoxically have the same entropy behaviour, whenever
(en(A)) or (en(coA)) decreases ``slowly'' in the above sense. This property
of B-convex spaces is surprising and hard to understand since A can be
very small, e.g., of type A=[xn | n # N], where &xn& ``slowly'' decreases.
Moreover, as shown in [6], such a behaviour never occurs in E=l1 .
Namely, there was shown that for the subset A :=[anen | n # N], where
(en) denotes the canonical basis of l1 and (an) is an arbitrary positive,
decreasing sequence such that (n:an) is increasing for some :>0, we have

=n(A)tanten(coA).

In particular this shows that there is a wide difference by considering the
entropy numbers of such subsets in l1 and in lp for 1<p<�.

Theorem 5. Let E be a Banach space, such that the dual space E$ fulfills
the condition (3) for the parameter ; # (0, 1�2]. Furthermore let 0�_<
:&; and f : [0, �) � (0, �) be a function such that

a&_f (x)�f (ax)�a_f (x)

holds for all a, x�1. Then there exists a constant c�1, such that for all
precompact A/E and all n # N the inequality

sup
k�n

k;(log2(k+1)):&; f (log2(k+1)) ek(coA)�c
&A&

=1(A)
sup
k�an

k:f (k) ek(A)

holds with an :=n;�(:&_) log2(n+1). If E is a Hilbert space and ;= 1
2 , this

is also true for the Gelfand widths cn(coA).

Proof. We define Cn :=supk�an
k:f (k) ek(A). Then we obtain analogously

to the previous theorem:

n;(log2(n+1)):&; f (log2(n+1)) en(T $A : E$ � l�(A))�c (1)
:, ;, f (E )

&A&

=1(A)
Cn .
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Thus, for $=2;+:+_ and c:, ;, f (E ) :=d$(E ) c (1)
:, ;, f (E ) we receive

n$en(coA)�d$(E ) sup
k�n

k$ek(T $A : E$ � l�(A))

�d$(E ) c (1)
:, ;, f (E )

&A&

=1(A)
sup
k�n

k$k&;

_(log2(k+1));&: f (log2(k+1))&1 Ck

�c:, ;, f (E )
&A&

=1(A)
Cn(log2(n+1))_ f (log2(n+1))&1

_sup
k�n

k$&;(log2(k+1));&:&_

=c:, ;, f (E )
&A&

=1(A)
Cn n$&;(log2(n+1));&: f (log2(n+1))&1. K

Corollary 4. Let E be a Banach space of type p>1 and ; :=1& 1
p . If

A/E is a precompact subset with en(A)Pn&: (log(n+1))&# for some :>;
and # # R, then we have

en(coA)Pn&;(log(n+1))&:+; (log(log(n+1)+1))&#.

This estimate is asymptotically optimal for E=lp .

Proof. It remains to prove that the estimate is asymptotically optimal.
Therefore we consider the set

A :=[(log2(n+1)&: (log(log(n+1)+1))&# en | n # N]/lp ,

where 1<p�2 and (en) is the canonical basis of lp . Then we obtain

en(A)Pn&:(log(n+1))&#.

Now let n�2 and An :=[(log2(k+1)&: (log(log(k+1)+1))&# ek | n�k
�n2]. Then by a result of Schu� tt in [14] we get

en(coA)�en(coAn)

�(log2(n2+1)&: (log(log(n2+1)+1))&# en(id : ln2&n
1 � ln2&n

p )

p (log2(n+1))&: (log(log(n+1)+1))&# \log2 \n2&n
n

+1+
n +

1&1�p

pn&;(log2(n+1));&: (log(log(n+1)+1))&#. K
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By the same methods Theorem 3 and Corollary 2 can be transferred to

Theorem 6. Let E be a Banach space, such that the dual space E$ fulfills
the condition (3) for the parameter ; # (0, 1�2]. Then for all :>0 and #�0
there exists a constant c:, ;, #(E )�1, such that for all precompact A/E and
all n # N the inequality

sup
k�n

k:+;(log2(k+1))# ek(coA)

�c:, ;, #(E )
&A&

=1(A)
sup

k�n1+;�:
k:(log2(k+1))# =k(A)

holds. If E is a Hilbert space and ;= 1
2 , this is also true for the Gelfand

widths cn(coA).

Corollary 5. Let E be a Banach space of type p>1, ; :=1& 1
p . If

A/E is a precompact subset with =n(A)Pn&:(log(n+1))&# for some :>0
and # # R, then we have

en(coA)Pn&:&;(log(n+1))&#.

This estimate is asymptotically optimal for E=lp .

Proof. Again, it suffices to show that the estimate is asymptotically
optimal. Therefore we consider the set

A :=[n&:(log2(n+1))&# en | n # N]/lp

for 1<p�2. Then we get =n(A)=n&:(log2(n+1))&#. Moreover, with
An :=[k&:(log2(k+1))&# ek | k�n] and the result of Schu� tt in [14] we
obtain

en(coA)�en(coAn)

�n&:(log2(n+1))&# en(id : ln
1 � ln

p)

�n&:(log2(n+1))&# cp \log2 \n
n

+1+
n +

1&1�p

=cpn&:&;(log2(n+1))&#. K

Remark. Corollaries 4 and 5 also hold for the Gelfand widths cn(coA)
instead of the entropy numbers en(coA) if E is a Hilbert space. In this case
it can be shown by a result in [10] that the estimates are asymptotically
optimal.
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With the help of Proposition 2 we finally obtain:

Corollary 6. Let 2�p<� and E=lp . Then the estimates of
Corollaries 1 and 2 are asymptotically optimal for suitable compact metric
spaces (K, d ) and suitable 1-Ho� lder-continuous operators T : E � C(K ).

Remark. For the limiting case :=; of Theorem 4 the estimate (5) can
be transferred to

sup
k�n

(log(k+1))&(1+;) k;ek(coA)�c;(E )
&A&

=1(A)
sup
k�n

k;ek(A).

Hence we get en(coA)Pn&;(log(n+1))1+; whenever en(A)Pn&;. An
estimate, where the log-term disappears, was shown in [12] for ``small''
sets A in Hilbert spaces. The general case is an open problem.
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